Some Relations Between the Values of a Function and its First Derivative at *n* Abscissa Points

By Robert E. Huddleston

Abstract. For a polynomial, P, of degree 2n - 2, there exists a relation between the values of P and the values of its first derivative, P', at the n abscissa points x_1, \dots, x_n ,

$$\sum_{i=1}^{n} [a_i P(x_i) + b_i P'(x_i)] = 0.$$

Replacing P by a differentiable function y yields

$$\sum_{i=1}^{n} [a_i y(x_i) + b_i y'(x_i)] = E(y, x).$$

These relations are obtained and the error function E(y, x) is given explicitly.

1. Introduction. For a polynomial, P_{2n-2} , of degree 2n - 2, there exists a relation between the values of P_{2n-2} and its first derivative at the *n* distinct abscissas x_1, \dots, x_n . If n = 2 and $x_2 - x_1 = h$, the relation is

$$2P_2(x_1) + hP'_2(x_1) = 2P_2(x_2) - hP'_2(x_2).$$

If we impose the condition that $x_i = x_1 + (j - 1)h$, $j = 1, 2, \dots, n$ (fixed step-size case), then at least for low-order *n*, there is a reasonably straightforward method for determining such relations [1, p. 247]. If we are given a function y which is differentiable, how much error do we incur by using the polynomial relation for y? For n = 2, we are asking what the term E(x, y) is in the relation

$$2y(x_1) + hy'(x_1) = 2y(x_2) - hy'(x_2) + E(x, y).$$

For the fixed step-size case and for $n \leq 4$, these relations are in the literature [1, p. 247]. However, for the case in which the x_i are not evenly spaced, no such results are available. It is the purpose of this paper to derive such relations along with the corresponding error relations.

2. Method. Let $y_i \equiv y(x_i)$ and $y'_i \equiv y'(x_i)$, $j = 1, \dots, n$. We shall use a method which in essence is the derivation of Hermite interpolation, given the data $(x_1, y_1, y'_1), \dots, (x_{n-1}, y_{n-1}, y'_{n-1})$. The lack of data for y_n causes most of the difficulties. However, if one is familiar with the derivation of Hermite interpolation [3, p. 192], the derivation of the following relations will be recognized as an exercise in drudgery. The determination of the relation for E(x, y) is not so straightforward. Hence, we shall first determine the polynomial P_{2n-2} such that $P_{2n-2}(x_i) = y_i$, i = 1,

Copyright © 1971, American Mathematical Society

Received June 25, 1970.

AMS 1970 subject classifications. Primary 65L05; Secondary 26A75.

Key words and phrases. Ordinary differential equations, Runge-Kutta, error estimation for Runge-Kutta, one-step methods for ordinary differential equations, polynomials.

 \cdots , n-1, and $P'_{2n-2}(x_i) = y'_i$, $i = 1, \dots, n$. Then, we will evaluate the polynomial at x_n and find $E(x_n, y)$ such that

$$y(x_n) = P_{2n-2}(x_n) + E(x_n, y).$$

3. Derivation of P_{2n-2} . Following the idea of Hermite interpolation, we search for P_{2n-2} of the form

(3.1)
$$P_{2n-2}(x) = \sum_{i=1}^{n-1} \alpha_i(x) y_i + \sum_{i=1}^n \beta_i(x) y'_i,$$

where

 $\alpha_i(x_i) = \delta_{ii}, \quad j = 1, \dots, n-1, \quad \text{and} \quad \beta_i(x_i) = 0, \quad j = 1, \dots, n-1, \\
\alpha'_i(x_i) = 0, \quad j = 1, \dots, n, \quad \beta'_i(x_i) = \delta_{ij}, \quad j = 1, \dots, n.$

Let

$$l_i(x) = \frac{1}{A_i} \prod_{j=1; j \neq i}^{n-1} (x - x_j)$$

where

$$A_{i} = \prod_{j=1; j \neq i}^{n-1} (x_{i} - x_{j}).$$

The α_i can then be represented by

$$\alpha_i(x) = A_i^2 l_i^2(x) [\gamma_i x^2 + \delta_i x + \eta_i],$$

where the γ_i , δ_i , and η_i are to be determined by the conditions $\alpha_i(x_i) = 1$, $\alpha'_i(x_i) = \alpha'_i(x_n) = 0$. After much algebraic manipulation we arrive at

$$\begin{split} \gamma_i &= \frac{1}{A_i^2(x_n - x_i)} \left[l_i'(x_i) + \frac{l_i'(x_n)[(x_n - x_i)l_i'(x_i) - 1]}{l_i(x_n) + (x_n - x_i)l_i'(x_n)} \right], \\ \delta_i &= -2A_i^{-2}l_i'(x_i) - 2\gamma_i x_i, \\ \eta_i &= A_i^{-2} + 2A_i^{-2}x_i l_i'(x_i) + x_i^2 \gamma_i. \end{split}$$

Since we are interested in evaluating $P_{2n-2}(x)$ at x_n , we find

(3.2)
$$\alpha_i(x_n) = -l_i^2(x_n) \left[\sum_{j=1}^{n-1} \frac{1}{x_n - x_j} \right]^{-1} \left[\sum_{j=1; j \neq i}^n \frac{1}{x_i - x_j} \right]$$

In like manner the β_i , for $i = 1, \dots, n - 1$, may be represented by

$$\beta_i(x) = A_i^2 l_i^2(x) [a_i x^2 + b_i x + c_i]$$

where the a_i , b_i , and c_i are to be determined by $\beta_i(x_i) = \beta'_i(x_n) = 0$ and $\beta'_i(x_i) = 1$. This yields

$$a_{i} = -\frac{1}{2A_{i}^{2}}\left[\frac{1}{x_{n}-x_{i}}+\frac{l_{i}'(x_{n})}{l_{i}(x_{i})+(x_{n}-x_{i})l_{i}'(x_{n})}\right],$$

and

$$b_{i} = A_{i}^{-2} - 2a_{i}x_{i},$$

$$c_{i} = x_{i}[a_{i}x_{i} - A_{i}^{-2}]$$

The term $\beta_n(x)$ is determined separately and yields

$$\beta_n(x) = \frac{l_n^2(x)}{2l_n'(x_n)}.$$

Combining these relations for the β_i and evaluating at x_n , we have

(3.3)
$$\beta_i(x_n) = \frac{1}{2} l_i^2(x_n) \left[\sum_{j=1}^{n-1} \frac{1}{x_n - x_j} \right]^{-1}, \quad j = 1, \cdots, n.$$

From (3.1), (3.2), and (3.3), we have

(3.4)
$$= \left(\sum_{j=1}^{n-1} \frac{1}{x_n - x_j}\right)^{-1} \left\{ -\sum_{i=1}^{n-1} \left[l_i^2(x_n) \left(\sum_{j=1; j \neq i}^n \frac{1}{x_i - x_j} \right) y_i \right] + \frac{1}{2} \sum_{i=1}^n l_i^2(x_n) y_i' \right\}.$$

4. Determination of the Error. We now wish to determine $E(y, x_n)$ in the relation

 $y(x_n) = P_{2n-2}(x_n) + E(y, x_n).$

Let

(4.1)
$$\phi(x) = 2(x_n - x)l_n^2(x)l_n'(x_n) + l_n^2(x).$$

Then

$$\phi(x_i) = \delta_{ni}, \qquad j = 1, \cdots, n,$$

$$\phi'(x_i) = 0, \qquad \tilde{j} = 1, \cdots, n.$$

Let F be defined by

(4.2)
$$F(x) = y(x) - P_{2n-2}(x) - \phi(x)[y(x_n) - P_{2n-2}(x_n)].$$

Then F has the properties

(4.3)
$$F(x_i) = 0, \quad j = 1, \dots, n, \text{ and}$$

 $F'(x_i) = 0, \quad j = 1, \dots, n.$

Hence, F has at least 2n zeroes (n double zeroes) in the smallest interval J containing x_1, \dots, x_n . [Note that $l'_n(x_n)$ is nonzero provided that x_n lies outside the smallest interval, I, containing x_1, \dots, x_{n-1} .] Applying Rolle's theorem (2n - 1) times, we may state that $F^{(2n-1)}$ has at least one zero in J. Let ζ be such a zero. From (4.2),

$$F^{(2n-1)}(x) = y^{(2n-1)}(x) - P^{(2n-1)}_{2n-2}(x) - \phi^{(2n-1)}(x)[y(x_n) - P_{2n-2}(x_n)].$$

But $P_{2n-2}^{(2n-1)}(x) \equiv 0$ since the degree of $P_{2n-2}(x) = 2n - 2$. If one notes that $\phi(x)$ is a polynomial of degree 2n - 1 with leading coefficient $-2A_n^{-2}l'_n(x_n)$, then it is clear that

$$\phi^{(2n-1)}(x) = -2(2n-1)! A_n^{-2}l'_n(x_n).$$

Hence,

$$0 = F^{(2n-1)}(\zeta) = y^{(2n-1)}(\zeta) + 2(2n-1)! A_n^{-2} l'_n(x_n) [y(x_n) - P_{2n-2}(x_n)].$$

Thus, we have established the following: G(2n-1) is D(2n-1).

THEOREM. If $y \in C^{(2n-1)}$ [J], then

(4.4)
$$y(x_n) = P_{2n-2}(x_n) - \frac{A_n^2 y^{(2n-1)}(\zeta)}{2(2n-1)! l_n'(x_n)},$$

where $\zeta \in J$ and $x_n \notin I$.

5. Relations Between $y(x_i)$ and $y'(x_i)$. From (3.4) and (4.4) and use of the identity

$$l'_i(x) = l_i(x) \sum_{j=1; j \neq i}^{n-1} \frac{1}{x_i - x_j}$$

we arrive at the desired relation between $y(x_i)$ and $y'(x_i)$, $j = 1, \dots, n$:

(5.1)
$$\sum_{i=1}^{n} \left\{ \prod_{j=1; j \neq i}^{n-1} \left(\frac{x_n - x_j}{x_i - x_j} \right)^2 \left[y'_i - \left(\sum_{j=1; j \neq i}^{n} \frac{2}{x_i - x_j} \right) y_i \right] \right\} = -E(x_n, y)$$

where

(5.2)
$$E(x_n, y) = -\frac{\prod_{j=1}^{n-1} (x_n - x_j)^2 y^{(2n-1)}(\zeta)}{2(2n-1)! \sum_{j=1}^{n-1} \left(\frac{1}{x_n - x_j}\right)}.$$

For the special case of even step-size $(x_i = x_1 + (j - 1)h, j = 1, \dots, n)$, the above relations reduce to

(5.3)
$$\sum_{i=1}^{n} \left\{ \binom{n-1}{i-1} \left[hy'_{i} - \left(\sum_{j=1: j \neq i}^{n} \frac{2}{i-j} \right) y_{i} \right] \right\} = -E(x_{n}, y),$$

where

(5.4)
$$E(x_n, y) = -\frac{[(n-1)!]^2}{2(2n-1)!} h^{2n-1} y^{(2n-1)}(\zeta).$$

6. An Alternate Approach. If we had given the data $(x_1, y_1, y'_1), \dots, (x_{n-1}, y_{n-1}, y'_{n-1}), (x_n, y_n)$ and determined the polynomial

(6.1)
$$Q_{2n-2}(x) = \sum_{i=1}^{n} q_i(x)y_i + \sum_{i=1}^{n-1} r_i(x)y'_i$$

such that

$$Q_{2n-2}(x_i) = y_i, \quad i = 1, \dots, n,$$

 $Q'_{2n-2}(x_i) = y'_i, \quad i = 1, \dots, n-1$

we would have had a much easier task in deriving expressions for the q_i and r_i . We could have then determined e(x, y) such that

(6.2)
$$y(x) = Q_{2n-2}(x) + e(x, y).$$

556

Having done this, we could differentiate (6.1), evaluate it at x_n , and have the desired relationship between $y(x_i)$ and $y'(x_i)$ for $j = 1, \dots, n$. However, the proof that e(x, y) can be differentiated as a function of x and the resulting differentiation represent a considerable task. From (6.1) and (6.2), we may write

(6.3)
$$y_n = \sum_{i=1}^{n-1} \left(-\frac{q'_i(x_n)}{q'_n(x_n)} y_i \right) + \sum_{i=1}^{n-1} \left(-\frac{r'_i(x_n)}{q'_n(x_n)} y'_i \right) + \frac{y'(x_n)}{q'_n(x_n)} - \frac{e'(x_n, y)}{q'_n(x_n)}$$

which we may compare with

(6.4)
$$y_n = \sum_{i=1}^{n-1} \alpha_i(x_n) y_i + \sum_{i=1}^n \beta_i(x_n) y'_i + E(x_n, y).$$

Choosing y to be an arbitrary polynomial of degree exactly 2n - 2, we note that the error terms are zero. Noting also that (1) the coefficients α_i , β_i , q_i , and r_i are independent of y, and (2) that the relation between the values of a polynomial of degree 2n - 2 and its derivatives at n distinct abscissa points is unique, we arrive at the conclusion that

$$\alpha_i(x_n) = -\frac{q'_i(x_n)}{q'_n(x_n)} \text{ and } \beta_i(x_n) = -\frac{r'_i(x_n)}{q'_n(x_n)},$$

for $i = 1, \dots, n-1$ and $\beta_n(x_n) = \frac{1}{q'_n(x_n)}$.

But then from (6.3) and (6.4), we conclude that

$$e'_n(x_n, y) = -q'_n(x_n)E(x_n, y).$$

7. Applications to Differential Equations. In order to approximate the solution of the initial-value problem

(7.1)
$$y'(x) = f(x, y(x)), \quad y(a) = A,$$

one often uses a one-step scheme of the form

(7.2)
$$y_{n+1} = y_n + h\Phi(x_n, y_n, h_n), \quad y_0 = A,$$

where $h_n = x_{n+1} - x_n$. The local truncation error, τ_n , in proceeding from x_n to x_{n+1} , is defined by

(7.3)
$$\tau_n = Z(x_{n+1}) - y_{n+1}$$

where Z(x) is given by

(7.4)
$$Z'(x) = f(x, Z(x)), \quad Z(x_n) = y_n.$$

Using the relationship (5.3) for Z with n = 2, we have

$$2Z(x_n) + hZ'(x_n) = 2Z(x_{n+1}) - hZ'(x_{n+1}) + O(h^3),$$

which, from (7.3) and (7.4), yields

$$(7.5) 2y_n + hf(x_n, y_n) = 2[\tau_n + y_{n+1}] - hf(x_{n+1}, \tau_n + y_{n+1}) + O(h^3).$$

Using a Taylor series expansion, we have

$$f(x_{n+1}, \tau_n + y_{n+1}) = f(x_{n+1}, y_{n+1}) + f_y(x_{n+1}, y_{n+1})\tau_n + O(\tau_n^2)$$

Substituting this in (7.5), we have

 $\tau_n = [y_n - y_{n+1}] + \frac{1}{2}h[f(x_n, y_n) + f(x_{n+1}, y_{n+1})] + hf_y(x_{n+1}, y_{n+1})\tau_n + O(h\tau_n^2).$ (7.6)

If this estimate is used with a one-step method having local truncation error of order h^2 (for example, Euler's method), then the last two terms of (7.6) are of the order h^3 and h^{5} and, hence, are negligible with respect to the local truncation error. Thus, we have the estimate

(7.7)
$$\tau_n = [y_n - y_{n+1}] + \frac{1}{2}h[f(x_n, y_n) + f(x_{n+1}, y_{n+1})].$$

Such estimates are derivable for one-step methods of higher order through the use of relation (5.1). The extensions are not straightforward and constitute the subject of [2]. It is important to note that the quantities needed for the estimate (7.7) are those normally calculated in a one-step procedure and thus require no additional function evaluations. This property is characteristic of estimates derivable from (5.1) (see [2]) and thus results in error estimates which are very inexpensive with respect to computer time. In particular, the estimates can replace the time consuming process, so often used with Runge-Kutta, of carrying two simultaneous calculations with step-sizes h and 2h and comparing the answers for step-size control.

Sandia Laboratories Numerical Applications Division 8321 Livermore, California 94550

1. F. CESCHINO & J. KUNTZMANN, Numerical Solution of Initial Value Problems, Prentice-

Hall, Englewood Cliffs, N. J., 1966. MR 33 #3465.
R. E. HUDDLESTON, Variable-Step Truncation Error Estimates for Runge-Kutta Methods of Order 4 or Less, Report #DC-70-261, Sandia Laboratories, Livermore, California.
E. ISAACSON & H. B. KELLER, Analysis of Numerical Methods, Wiley, New York, 1966.

MR 34 #924.