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Some Relations Between the Values of a Function and 
its First Derivative at n Abscissa Points 

By Robert E. Huddleston 

Abstract. For a polynomial, P, of degree 2n - 2, there exists a relation between the 
values of P and the values of its first derivative, P', at the n abscissa points xl, ,Xn 

n 
[aP(xj) + biP'(x,)] = 0. 

Replacing P by a differentiable function y yields 
n 
E [aiy(xi) + by'(xi)] = E(y, x). 

These relations are obtained and the error function E(y, x) is given explicitly. 

1. Introduction. For a polynomial, P2n,.2, of degree 2n - 2, there exists a 
relation between the values of P2,,2 and its first derivative at the n distinct abscissas 

xI, ***,x". If n = 2 and x2 - X h, the relation is 

2P2(X1) + hP2(x) = 2P2(x2) - hP'(x2). 

If we impose the condition that xi = xl + (j - l)h, j = 1, 2, * * *, n (fixed step-size 
case), then at least for low-order n, there is a reasonably straightforward method for 
determining such relations [1, p. 247]. If we are given a function y which is differen- 
tiable, how much error do we incur by using the polynomial relation for y? For 
n = 2, we are asking what the term E(x, y) is in the relation 

2y(xl) + hy'(x1) = 2y(x2) - hy'(x2) + E(x, y). 

For the fixed step-size case and for n 5 4, these relations are in the literature 
(1, p. 247]. However, for the case in which the xi are not evenly spaced, no such 
results are available. It is the purpose of this paper to derive such relations along 
with the corresponding error relations. 

2. Method. Let y, y(xj) and y' y'(xi), j = 1, *., n. We shall use a 
method which in essence is the derivation of Hermite interpolation, given the data 
(xI, Y1, YI), * * * , (Xn-,1 Yn-I, Yn-), (Xn, yn). The lack of data for Yn causes most of the 
difficulties. However, if one is familiar with the derivation of Hermite interpolation 
(3, p. 192], the derivation of the following relations will be recognized as an exercise 
in drudgery. The determination of the relation for E(x, y) is not so straightforward. 
Hence, we shall first determine the polynomial P2A2 such that P2n-2(xi) = yi, i = 1, 
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, n -1, and P~.2',(xi) = yr, i = 1, , n. Then, we will evaluate the polynomial 
at x, and find E(x,, y) such that 

y(x.) = P2n 2(X,) + E(xn, y). 

3. Derivation of P2n-2. Following the idea of Hermite interpolation, we search 
for P2,.2 of the form 

n-1 n 

(3.1) P2.-2(X)= E a (x)y. + E i W 
i -i i-1 

where 

a,(x;) = 8i, j = 1, , n- 1, di(xi) = 0, = - 1, 

ai(xi) = 0, j = 1, n, 3(xs) = ,, j = 1, *., n. 

Let 

1n-i 
ij(X)=- ) (x-Xj) A, j-i; 

where 
n-1 

Ai = H (xi - x). 
i-l;j, i 

The a, can then be represented by 

a,(x) =A,212(x)[,yx2 + Six + t1, 

where the yei, Si, and , are to be determined by the conditions a,(xi) = 1, a(x,) = 

a'(Xn) = 0. After much algebraic manipulation we arrive at 

ri(Xn)[(Xn - X,)-(X ] 
Ai(Xn- Xi) lii li(Xn) + (Xn - 

XiX X )1(Xi) 

5, = -2A,2lg(xi)- 2yixi, 

7i = A, 2 + 2A 2Xi lg(Xi) + x2'y. 

Since we are interested in evaluating P2n-2(x) at Xn, we find 

(3.2) Cai(Xn) = l(Xn)[ X ][ 
i-1 Xn - Xi i-1di Xi X i 

In like manner the #i, for i = 1, , n - 1, may be represented by 

Oi (x) = A l?2(x)[aX2 + bix + c,] 

where the ai, bi, and ci are to be determined by #i(xi) = #Z(Xn) =0 and #3(xj) = 1. 
This yields 

1 F 1 + li (X.) 1 
ia, A2 lAi - Xi l(X ) + (Xn - Xi)l,(Xn)j 
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and 

bi = A2 - 2aixi, 

-2 
ci = xi[ajxj - Ai ] 

The term K3,(x) is determined separately and yields 

2l1.(x.) d"~(x) = 2 '(x ) 

Combining these relations for the fi and evaluating at x., we have 

(3.3) i3(X.) = 2l~ i [E xI I i j = 1, n. 

From (3.1), (3.2), and (3.3), we have 

P2n-2(Xn) 

(3.4) n-1 >{-1 n-: [i( n( n,' -- 
(-1 Xn -x i [ (i-A,^ii i X i )] 2il } 

4. Determination of the Error. We now wish to determine E(y, xn) in the 
relation 

Y(Xn) = P2n..2(xn) + E(y, xn). 

Let 

(4.1) 4 (x) = 2(xn - x)In(x)In(x.) + In(x). 

Then 

9b(Xi) = Knin j = s , n, 

'(xd) = O. 1 = 1, ,n. 

Let F be defined by 

(4.2) F(x) = y(x) - P2.-2(X) - (X)[y(xn) -P2n-2(Xn)] 

Then F has the properties 

(4.3) F(xj) = 0, ] = 1, *.., 
n, and 

F'(xi) = 0, j = 1, n , n. 

Hence, F has at least 2n zeroes (n double zeroes) in the smallest interval J containing 
xi, , xn. [Note that ln(x,,) is nonzero provided that xn lies outside the smallest 
interval, I, containing x,, , xn-l.] Applying Rolle's theorem (2n- 1) times, we 
may state that F'2n- ' has at least one zero in J. Let v be such a zero. From (4.2), 

(2n-1)(X) y=(2n-1)(x) _ p(2n i)(x) _ ,0(2n-1)(X)[y(X.) - 

But P2-)(x) =-0 since the degree of P2n-2(x) = 2n - 2. If one notes that 4(x) is a 
polynomial of degree 2n- I with leading coefficient -2Anj2In(xn), then it is clear 
that 

(2n-1) - - -A 21(X). 
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Hence, 

0 = = =(2 l)(r) + 2(2n - 1)! AP22(x()[y(xI))- 

Thus, we have established the following: 
THEOREM. If y C 2"n-1) [J], then 

(4.4) Ay(x) = P2.-2(X.) - AY1 () 
(4.4) ~~~~~~~~2(2n - 1)! l,1(xj) 

where r - J and xn ( I. 

5. Relations Between y(x;) and y'(xD). From (3.4) and (4.4) and use of the 
identity 

n-1 

I'(x) = 4i(X) -X 
j-i;i,#, Xi Xi 

we arrive at the desired relation between y(xj) and y'(xi), j = 1, * * , n: 

(5.1) E {HL (x, 2 x )Yi1} -Ex, y) 

where 

(5.2) E(x, y) = A JI-: (xn - 
2(2n- 1)! E%,, (x I ) 

For the special case of even step-size (xi = xi + (j - 1)h, j = 1, * * , n), the above 
relations reduce to 

(5.3) {( i = -E(x,, y), 

where 

(5.4) E(x,, Y) = -[(n - 1)!] h2n-Iy On-1) M. 
2(2n - 1)! 

6. An Alternate Approach. If we had given the data (x1, y,, y), * *, -, 

Yn-i, y'-1), (xn, yn) and determined the polynomial 
It n-1 

(6.1) Q2n-2(x) = E qi(x)y, + E r,(x)y' 
i-1 i-1 

such that 

Q2n-2(xi) Y., i = 1, n, 

Q2n-2(Xi) = Y, i = 1, , n - 1, 

we would have had a much easier task in deriving expressions for the q, and r,. We 
could have then determined e(x, y) such that 

(6.2) y(x) = Q2n-2(x) + e(x, y). 
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Having done this, we could differentiate (6.1), evaluate it at x", and have the desired 
relationship between y(xj) and y'(xj) for j = 1, * , n. However, the proof that 
e(x, y) can be differentiated as a function of x and the resulting differentiation repre- 
sent a considerable task. From (6.1) and (6.2), we may write 

"- ( (, 
"- 

(ri,(x) ,' + yf(x,,) _e'(x, y) 
(6.3) Y i = qn(x,) ) i lf ( qf(x") ) qf(x") q^(x) 

which we may compare with 
11-1 11 

(6.4) n= E aci(x,)yi + E Oj(xj)y' + E(x,, y). 
i-1 i-1 

Choosing y to be an arbitrary polynomial of degree exactly 2n - 2, we note that the 
error terms are zero. Noting also that (1) the coefficients a,, fiB q,, and r, are 
independent of y, and (2) that the relation between the values of a polynomial of 
degree 2n - 2 and its derivatives at n distinct abscissa points is unique, we arrive 
at the conclusion that 

a i(X.) = q(X ) and i(xn) = - -q$(X) 

for i 1, ... n - 1 and i3n(Xn) = qO(x ) 

But then from (6.3) and (6.4), we conclude that 

ef(x", y) = -qf(xn)E(xn, A). 

7. Applications to Differential Equations. In order to approximate the solution 
of the initial-value problem 

(7.1) y'(x) = f(x, y(x)),- y(a) = A, 

one often uses a one-step scheme of the form 

(7.2) Yn+i = Yn + h*((Xn, Yn, hn), Yo = A, 

where hn = Xn+ - Xn. The local truncation error, rn, in proceeding from xn to 
Xn+19 is defined by 

(7.3) rn = Z(xn+l) Yn+- 

where Z(x) is given by 

(7.4) Z' (x) = f(x, Z(x)) , Z(Xn) = Yn 

Using the relationship (5.3) for Z with n = 2, we have 

2Z(xn) + hZ'(xn) = 2Z(Xn +) - hZ'(xn+1) + O(h 3), 

which, from (7.3) and (7.4), yields 

(7.5) 2Yn + hf(xn, Yn) = 2[rn + Yn+i] - hf(x+ 1, rn + Yn+1) + O(h3). 

Using a Taylor series expansion, we have 

f(Xn+l, Twn + Yn+1) = f(Xn+l, Yn+1) + fy(xn+l, Yn+1)7n + O(rn) 
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Substituting this in (7.5), we have 

(7.6) [n [Y. - Yn+i] + 2h[f(x., yn) + f(x.+1, y.+D)] + hIv(xn+1, yn+1),r + O(hrT). 

If this estimate is used with a one-step method having local truncation error of order 
h2 (for example, Euler's method), then the last two terms of (7.6) are of the order h' 
and hY and, hence, are negligible with respect to the local truncation error. Thus, we 
have the estimate 

(7.7) mn = [Y. - Yn+I] + 2h[f(xs, yn) + f(xn+l, Yn+l)]. 

Such estimates are derivable for one-step methods of higher order through the 
use of relation (5.1). The extensions are not straightforward and constitute the 
subject of [2]. It is important to note that the quantities needed for the estimate 
(7.7) are those normally calculated in a one-step procedure and thus require no 
additional function evaluations. This property is characteristic of estimates derivable 
from (5.1) (see [2]) and thus results in error estimates which are very inexpensive with 
respect to computer time. In particular, the estimates can replace the time consuming 
process, so often used with Runge-Kutta, of carrying two simultaneous calculations 
with step-sizes h and 2h and comparing the answers for step-size control. 
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